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Chapter 1

Concepts from Classical
Physics and Early Quantum
Mechanics

Classical physics consists of two main theories, Newton’s mechanics and
Maxwell’s electromagnetism.

Concept 1.0.1. (Newton’s mechanics)
This branch of classical physics deals with the motion of particles under the
influence of forces. Their position ~x(t) can be computed using Newton’s
Second Law:

d

dt
(m~̇x) = ~F (1.1)

This is typically written as ~F = −~∇V where V is some potential.

Newton’s Second Law has many equivalent formulations:

• Euler-Lagrange equations from L := T − V where T = m
2
~̇x2

• Hamilton equations: ṗ = −∂H
∂q
, q̇ = ∂H

∂p

• Poisson brackets: ṗ = {p,H}, q̇ = {q,H}, H = T + V

Concept 1.0.2. (Maxwell’s Theory of Electromagnetism)

This branch of classical physics descrbes electric and magnetic fields, ~E(t, ~x)

and ~B(t, ~x), as induced by electric charges.
The theory is governed by Maxwell’s equations:
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• ~∇ · ~E = 4πρ

• ~∇ · ~B = 0

• ~∇× ~E + 1
c
∂ ~B
∂t

= 0

• ~∇× ~B − 1
c
∂ ~E
∂t

= 4π
c
~j

where ρ is the electric charge density, ~j is the electric current density and c
is the speed of light.

1.1 Early Quantum Mechanical Ideas

Observation 1.1.1 (1860s). Hot Hydrogen gas emits light. A spectral anal-
ysis reveals that only a discrete set of wavelengths are emitted.

Observation 1.1.2 (1900). Black body radiation (in hot coal for example)
occurs in discrete packages denoted quanta of energy. The physicist Max
Planck presents the spectral density of such radiation. It is found that the
energy of the radiation satisfies E = ~ω. Where ~ = 1×10−34Js is Planck’s
constant and ω is the wavelength of the radiation.

Observation 1.1.3 (1905). When UV light is shone against certain mate-
rials, electrons are emitted. The physicist Albert Einstein explains this effect
using the assumption that light is a stream of particles with energy E = ~ω
and momentum p = ~k.

Observation 1.1.4 (1911). The physicist Ernest Rutherford’s experiments
suggest that atoms consist of a positively charged nucleus and of negatively
charged electrons orbiting around it under the influence of the Coulomb Force.
According to Maxwell’s theory, the electrons’ acceleration must cause them
to give off electromagnetic radiation. This would cause them to lose energy
and fall into the nucleues. This implies that, according to classical physics,
atoms are unstable which is a contradiction to the fact that matter composed
of atoms exists and is stable.

Observation 1.1.5 (1913). The physicist Niels Bohr supplements Ruther-
ford’s model by postulating that only certain electronic orbits are permitted.
In specific, electrons can only orbit where their orbital angular momentum
is quantised: mvr = n~, n ∈ N. This agrees with the experiments from the
1860s.
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Observation 1.1.6 (1924). The physicist Louis de Broglie postulates that
particles can behave like waves and vice versa. This is known as wave-
particle duality. We can therefore associate a frequency ω = E

~ and wave
number k = p

~ to a particle with energy E and momentum p.

Observation 1.1.7. The physicists Clinton Davisson and Lest Germer de-
vise an analogue of the double slit experiment for electrons. An interfer-
ence pattern, just like that with light, is obtained with wavelength that fits de
Broglie’s formulae. Hence, very small particles can show wave-like behaviour.



Chapter 2

The Schrödinger equation

This equation was formulated by Erwin Schrödinger in 1925. It governs non-
relativistic Quantum Mechanics in a similar way to how Newton’s Second
Law governs non-relativistic classical mechanics. It cannot be derived but it
results from de Broglie’s postulates.

2.1 Setting up the equation

We begin by noting de Broglie’s postulates. A particle of energy E and mo-
mentum p can be viewed as a wave with frequency ω = E

~ and wavelength
λ = 2π~

p
. This gives us a wave number of k = 2π

λ
= p

~ .

We can now describe a plane wave with these observations:

Ψ(x, t) = Cei(kx−ωt)

Clearly, EΨ(x, t) = ~ωΨ(x, t) = i~ ∂
∂t

Ψ(x, t) and pΨ(x, t) = −i~ ∂
∂x

Ψ(x, t).

We can now use the relation E = p2

2m
we can see that Ψ(x, t) satisfies

i~ ∂
∂t

Ψ(x, t) = − ~2
2m

∂2

∂x2
Ψ(x, t).

We can now generalise the above formulation by considering a potential func-
tion V. The total energy is thus E = p2

2m
+ V . Following a similar path as

before, we get

i~
∂

∂t
Ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+ V

)
Ψ(x, t) (2.1)
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the Schrödinger equation.

2.2 Properties of the Schrödinger Equation

Property 2.2.1. Ψ(x, t) = ei(kx−ωt) is not a solution if V 6= 0. A solution
Ψ(x, t) to the Schrödinger equation is still referred to as a wave function.

Property 2.2.2. The Schrödinger equation can easily be extended to three
dimensional space via the following equation:

i~
∂

∂t
Ψ(~x, t) =

(
− ~2

2m
∆ + V (~x, t)

)
Ψ(~x, t)

where ∆ = ~∇ · ~∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplacian operator.

Property 2.2.3. The related momentum is now a linear differential operator
acting on a wave function Ψ:

p̂ = i~
∂

∂x

The position is still given by x̂ = x which acts on a wave function by multi-
plication.
It is easy to see that

x̂p̂Ψ(x, t) = −i~x ∂
∂x

Ψ(x, t)

p̂x̂Ψ(x, t) = −i~ ∂
∂x

(xΨ(x, t))

This is an example of non-commutativity of quantum mechanical observables.
We also define H = p2

2m
+ V = − ~2

2m
∆ + V as the Hamilton operator.

Property 2.2.4. The Schrödinger equation, being a partial differential equa-
tion, satifies the superposition principle.
If ψ1 and ψ2 are solutions of i~ ∂

∂t
Ψ(x, t) = HΨ(x, t) then α1ψ1+α2ψ2,∀α1, α2 ∈

C is also a solution.

Property 2.2.5. The Schrödinger equation is first order in ∂
∂t

and hence
Ψ(~x, 0) can be determined from Ψ(~x, t = 0).

If V is time independent then Ψ(~x, t) = e−
i
~ tHΨ(~x, 0).
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Property 2.2.6. Assume V = V (~x) is a time-independent potential func-
tion. Using seperation of variables, set:

Ψ(~x, t) = ψ(~x)f(t)

We can now substitute this into the Schrödinger equation to get:

i~
∂

∂t
(ψ(~x)f(t)) =

(
− ~2

2m
∆ + V (~x)

)
(ψ(~x)f(t))

=⇒ i~ψ(~x)
∂

∂t
f(t) = f(t)

(
− ~2

2m
∆ + V (~x)

)
ψ(~x)

=⇒ i~
1

f(t)

∂

∂t
f(t) =

1

ψ(~x)

(
− ~2

2m
∆ + V (~x)

)
ψ(~x)

Now the left hand side is a function of only t and the right hand side is a
function of only x. This must mean that both sides are equal to a constant,
say E. We therefore have the two equations

i~
d

dt
f(t) = Ef(t) (2.2)

Hψ(~x) = Eψ(~x) (2.3)

The first is a first order differential equation with solution

f(t) = f(0)e−
i
~Et

The second equation is a second order differential equation. if ψ(~x) is a
solution to this equation then

Ψ(~x, t) = f(0)ψ(~x)e−
i
~Et

is a solution to the original time-dependent Schrödinger equation.
Equation (2.3) is referred to as the time-independent Schrödinger equa-
tion. It is an eigenvalue equation for the operator H with eigenfunction ψ(~x)
and eigenvalue E.
If {ψn}n∈N is a collection of wave functions with indexing set N that satisfy
Hψn = Enψn for all n ∈ N then

Ψ(~x, t) =
∑
n∈N

f(0)cnψn(~x)e−
i
h
Ent

solves the time-dependent Schrödinger equation for all cn ∈ C.
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2.3 Probabilistic Interpretation

Definition 2.3.1. Let Ψ(~x, t) be a wave function describing a quantum me-
chanical particle. Then

ρ(~x, t) = |Ψ(~x, t)|2 = Ψ(~x, t)∗Ψ(~x, t)

is the probability density of finding the particle at the position ~x and time
t.

Definition 2.3.2. Let Ψ(~x, t) be a wave function and ρ(~x, t) its corresponding
probability density. Then Ψ(~x, t) is said to be normalised if∫

R3

ρ(~x, t) d3x = 1

Remark. Any wave function that satisfies the Schrödinger equation is nor-
malisable. Indeed, if ψ(~x, t) is a non-normalised solution for the Schrödinger
equation then c ψ(~x, t) is also a solution for all c ∈ C. We can hence choose
C such that the wave function is normalised.

Proposition 2.3.3. Let Ψ(~x, t) be a wave function describing a quantum
mechanical particle. Then the associated proability density ρ(~x, t) satisfies
the following conservation law

∂

∂t
ρ(~x, t) + ~∇ ·~j(~x, t) = 0

where ~j = i~
2m

(Ψ~∇Ψ∗ −Ψ∗~∇Ψ).

Proof.

∂

∂t
ρ(~x, t) =

∂

∂t
Ψ(~x, t)∗Ψ(~x, t)

=
∂

∂t
(Ψ(~x, t)∗)Ψ(~x, t) + Ψ(~x, t)∗

∂

∂t
(Ψ(~x, t))

=
i

~
H∗(Ψ(~x, t)∗)Ψ(~x, t)− i

~
Ψ(~x, t)∗H(Ψ(~x, t))

=
i

~
[H∗(Ψ(~x, t)∗)Ψ(~x, t)−Ψ(~x, t)∗H(Ψ(~x, t))]

=
i

~

[{
− ~2

2m
∆Ψ(~x, t)∗ + V ∗Ψ(~x, t)∗

}
Ψ(~x, t)
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−Ψ(~x, t)∗
{
− ~2

2m
∆Ψ(~x, t) + VΨ(~x, t)

}]
=
i

~

[
− ~2

2m
∆Ψ(~x, t)∗Ψ(~x, t) +

~2

2m
∆Ψ(~x, t)Ψ(~x, t)∗

]
=

i~
2m

[−Ψ(~x, t)∆Ψ(~x, t)∗ + Ψ(~x, t)∗∆Ψ(~x, t)]

=
i~
2m

~∇ ·
[
−Ψ(~x, t)~∇Ψ(~x, t)∗ + Ψ(~x, t)∗~∇Ψ(~x, t)

]
= −~∇ ·~j

where we have used the fact that V (~x) = V (~x)∗

Remark. The above conservation law is referred to as the continuity equa-
tion and also arises in Maxwell’s theory of electromagnetism. We see through
calculus that

d

dt

∫
W

ρ d3x = −
∮
~j · d~S

This shows us that probability is conserved. It can leak out of W but can
neither be created nor destroyed.

Definition 2.3.4. We define the vector space L2(X) to be the set of functions

L2(X) =

{
ψ : X → C

∣∣∣∣ ∫
X

ψ(x)∗ψ(x) dx <∞
}

where X is a measure space such as R or R3.

Definition 2.3.5. We define a scalar product 〈·, ·〉 on L2(X) by the following
function

〈·, ·〉 : L2(X)× L2(X)→ C

(ψ(x), φ(x)) 7→ 〈ψ(x), φ(x)〉 =

∫
X

ψ(x)∗φ(x) dx

Definition 2.3.6. Let A : L2(R) → L2(R) be a linear operator and ψ1, ψ2 :
R→ C functions. Then A is called self-adjoint if

〈ψ1, Aψ2〉 = 〈Aψ1, ψ2〉 ∀ψ1, ψ2 ∈ L2(R)
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Definition 2.3.7. Let Ψ be a wave function and A a linear self-adjoint op-
erator. We define the expectation value of A acting on Ψ to be

〈A〉Ψ := 〈Ψ, AΨ〉 =

∫ 3

R
Ψ(~x, t)∗AΨ(~x, t) d3x

Proposition 2.3.8. Let Ψ be a wave function and A linear self adjoint op-
erator. Then the expectation value of A acting on Ψ is a real number.

Proof.

〈A〉Ψ = 〈Ψ, AΨ〉 = 〈AΨ,Ψ〉 = 〈Ψ, AΨ〉∗ = 〈A〉Ψ

2.4 Ehrenfest’s Theorem

Proposition 2.4.1. Let Ψ be a wave function. Then the expection of the po-
sition operator x̂ on Ψ satisfies the classical physics relation between velocity
and momentum

m
d

dt
〈x̂〉Ψ = 〈p̂〉Ψ

Proof. We prove the proposition for one space dimension. The proof for 3
space dimentions is analogous.

m
d

dt
〈x̂〉Ψ = m

d

dt

∫
R

Ψ∗xΨ dx

= m

∫
R
x
d

dt
(Ψ∗Ψ) dx

= m

∫
R
x

(
d

dt
(Ψ∗)Ψ +

d

dt
(Ψ)Ψ∗

)
dx

= m

∫
R
x

{
i

~
H∗(Ψ∗)Ψ− i

~
H(Ψ)Ψ∗

}
dx

= m

∫
R
x

{
i

~

(
− ~2

2m

∂2

∂x2
Ψ∗ + V ∗Ψ∗

)
Ψ−

(
−~2

2m

∂2

∂x2
Ψ + VΨ

)
Ψ∗
}
dx

= m

∫
R

ix

~

{(
− ~2

2m

∂2

∂x2
Ψ∗ + V ∗Ψ∗

)
Ψ−

(
− ~2

2m

∂2

∂x2
Ψ + VΨ

)
Ψ∗
}
dx
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= m

∫
R

ix

~

{
− ~2

2m

∂2

∂x2
Ψ∗Ψ +

~2

2m

∂2

∂x2
ΨΨ∗

}
dx

=

∫
R

i~x
2

{
− ∂2

∂x2
Ψ∗Ψ +

∂2

∂x2
ΨΨ∗

}
dx

=
i~
2

∫
R
x

{
−Ψ

∂2

∂x2
Ψ∗ + Ψ∗

∂2

∂x2
Ψ

}
dx

=
i~
2

∫
R
x

{
Ψ∗

∂2

∂x2
Ψ−Ψ

∂2

∂x2
Ψ∗
}
dx

=
i~
2

∫
R
x
∂

∂x

{
Ψ∗

∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗
}
dx

=
i~
2

[
x

{
Ψ∗

∂

∂x
Ψ−

(
∂

∂x
Ψ∗
)

Ψ

}]∞
−∞
− i~

2

∫
R

Ψ∗
∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗ dx

Now since Ψ is normalisable, we have that∫
R
|Ψ|2 <∞

=⇒ |Ψ|2 ∼ 1

x1+ε
as |x| → ∞, for some ε > 0 ∈ R

=⇒ |Ψ| ∼ x
−(1+ε)

2 as |x| → ∞, for some ε > 0 ∈ R

=⇒ ∂

∂x
|Ψ| ∼ −(1 + ε)

2
x
−(3+ε)

2 as |x| → ∞, for some ε > 0 ∈ R

=⇒ |Ψ| ∂
∂x
|Ψ| ∼ −(1 + ε)

2
x
−(4+ε)

2 as |x| → ∞, for some ε > 0 ∈ R

=⇒ x|Ψ| ∂
∂x
|Ψ| ∼ −(1 + ε)

2
x−(1+δ) as |x| → ∞, for some δ > 0 ∈ R

Now since limx→∞x
−(1+δ) = 0, we have that xΨ ∂

∂x
Ψ∗ and xΨ∗ ∂

∂x
Ψ both

converge to zero. Hence the first integral in the last line of the result above
vanishes and we are left with

m
d

dt
〈x̂〉Ψ = −i~

2

∫
R

Ψ∗
∂

∂x
Ψ−Ψ

∂

∂x
Ψ∗ dx

=
i~
2

∫
R

Ψ
∂

∂x
Ψ∗ −Ψ∗

∂

∂x
Ψ dx

=
1

2

∫
R

Ψ(i~
∂

∂x
Ψ∗)−Ψ∗

(
i~
∂

∂x
Ψ

)
dx
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=
1

2

∫
R

(
Ψ∗(−i~ ∂

∂x
Ψ)

)∗
−Ψ∗

(
i~
∂

∂x
Ψ

)
dx

=
1

2

∫
R

(
Ψ∗
(
i

~
∂

∂x
Ψ

))∗
+ Ψ∗

(
i

~
∂

∂x
Ψ

)
dx

=
1

2

∫
R

(Ψ∗ (p̂Ψ))∗ + Ψ∗ (p̂Ψ) dx

=
1

2

[∫
R

(Ψ∗ (p̂Ψ))∗ dx+

∫
R

Ψ∗ (p̂Ψ) dx

]
=

1

2
[〈Ψ, p̂Ψ〉∗ + 〈Ψ, p̂Ψ〉]

=
1

2
[〈p̂〉∗Ψ + 〈p̂〉Ψ]

= 〈p̂〉Ψ

where we have used the fact that the expectation value of a self-adjoint
operator is real.

Proposition 2.4.2. Let Ψ be a wave function. Then the expectation value
of the position operator on Ψ satisfies Newton’s Second Law

m
d

dt2
〈x̂〉Ψ = 〈− ∂

∂x
V 〉Ψ

Proof. We prove the proposition for one space dimension. The proof for 3
space dimentions is analogous.

m
d

dt2
〈x̂〉Ψ =

d

dt
〈p̂〉Ψ

=
d

dt

∫
R

Ψ∗p̂Ψ dx

=
d

dt

∫
R

Ψ∗
(
~
i

∂

∂x

)
Ψ dx

=

∫
R

∂

∂t
Ψ∗
(
−i~ ∂

∂x

)
Ψ dx

=

∫
R

∂

∂t
Ψ∗
(
−i~ ∂

∂x

)
Ψ dx

=

∫
R

(
∂

∂t
Ψ∗

∂

∂x
Ψ + Ψ∗

∂

∂x

(
∂

∂t
Ψ

))
dx
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=

∫
R

[(
−i~ ∂

∂t
Ψ∗
)

∂

∂x
Ψ−Ψ∗

∂

∂x

(
i~
∂

∂t
Ψ

)]
dx

=

∫
R

[
∂

∂x
Ψ

(
−~2

2m

∂2

∂x2
+ V ∗

)
Ψ∗ −Ψ∗

∂

∂x

(
−~2

2m

∂2

∂x2
+ V

)
Ψ

]
dx

=

∫
R

[
−~2

2m

∂Ψ

∂x

∂2Ψ∗

∂x2
+
∂Ψ

∂x
VΨ∗ +

−~2

2m
Ψ∗
∂3Ψ

∂x3
−Ψ∗

∂(VΨ)

∂x

]
dx

=

∫
R

[
−~2

2m

(
∂Ψ

∂x

∂2Ψ∗

∂x2
−Ψ∗

∂3Ψ

∂x3

)
+
��

��
�∂Ψ

∂x
VΨ∗ −Ψ∗

∂V

∂x
Ψ−

��
��
�

Ψ∗
∂Ψ

∂x
V

]
dx

=
~2

2m

∫
R

∂Ψ

∂x

∂2Ψ∗

∂x2
dx︸ ︷︷ ︸

A

−
∫
R

Ψ∗
∂3Ψ

∂x3
dx︸ ︷︷ ︸

B

− ∫
R

Ψ∗
∂V

∂x
Ψ dx

We can now integrate the term A by parts

∫
R

∂Ψ

∂x

∂2Ψ∗

∂x2
dx =

��
��

�
��
�*0[

∂Ψ

∂x

∂Ψ∗

∂x

]∞
−∞
−
∫
R

∂2Ψ

∂x2

∂Ψ∗

∂x
dx

= −
��

�
��

�
��*0[

∂2Ψ

∂x2
Ψ∗
]∞
−∞

+

∫
R

∂3Ψ

∂x3
Ψ∗ dx

where we have used a similar analytical process as the previous proposition’s
proof to show that the boundary terms vanish. We hence see that A cancels
with B, leaving

m
d

dt2
〈x̂〉Ψ = −

∫
R

Ψ∗
∂V

∂x
Ψ dx

=

∫
R

Ψ∗
(
−∂V
∂x

Ψ

)
dx

=

〈
Ψ∗,

(
−∂V
∂x

Ψ

)〉
=

〈
−∂V
∂x

〉
Ψ



CHAPTER 2. THE SCHRÖDINGER EQUATION 13

2.5 Uncertainity and the connection between

eigenvalues and measurements

Definition 2.5.1. Let Ψ be a wave function and A a linear operator acting
on Ψ. We define the uncertainty (∆A)Ψ of a measurement of A to be

(∆A)Ψ =
√
〈(A− 〈A〉Ψ)2〉Ψ

Proposition 2.5.2. Let Ψ be a wave function and A a self-adjoint linear
operator on Ψ. Then the uncertainty of the measurement of A acting on Ψ
vanishes if and only if Ψ is an eigenfunction of A.

Proof.

0 = (∆A)2
Ψ = 〈(A− 〈A〉Ψ)2〉Ψ = 〈Ψ, (A− 〈A〉Ψ)2Ψ〉

Now note from previous results that

(A− 〈A〉Ψ)∗ = A∗ − 〈A〉∗Φ = A− 〈A〉Φ

Hence

〈Ψ, (A− 〈A〉Ψ)2Ψ〉 =

∫
R

Ψ∗(A− 〈A〉Ψ)2Ψ dx

=

∫
R

Ψ∗(A− 〈A〉Ψ)∗(A− 〈A〉Ψ)Ψ dx

=

∫
R
((A− 〈A〉Ψ)Ψ)∗(A− 〈A〉Ψ)Ψ dx

= 〈(A− 〈A〉Ψ)Ψ, (A− 〈A〉Ψ)Ψ〉

Returning to the original assumption we see that

〈(A− 〈A〉Ψ)Ψ, (A− 〈A〉Ψ)Ψ〉 = 0 ⇐⇒ (A− 〈A〉Ψ)Ψ = 0

⇐⇒ AΨ = 〈A〉ΨΨ

Therefore the uncertainty vanishes if and only if Ψ is an eigenfunction of A
with eigenvalue 〈A〉Ψ.

Remark. It is obvious that if there is no uncertainty in the measurement then
there is no deviation from the expected value 〈A〉Ψ. By the above, it follows
that if there is no uncertainty in the measurement, the measured value of the
operator A acting on Ψ is an eigenvalue of the operator A acting on Ψ.
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Examples

3.1 Free Schrödinger equation: wave packets

Let us consider a free particle under the influence of the zero potential: V = 0.
The Schrödinger equation thus reduces to the free Schrödinger equation

i~
∂

∂t
Ψ(x, t) = − ~2

2m

∂2

∂x2
Ψ(x, t)

Since the Hamilton operator is not time-dependent, we can consider solutions
to the time-independent Schrödinger equation

− ~2

2m

∂2

∂x2
Ψ(x) = EΨ(x)

From a previous section, we know that the solutions to the time-independent
equation are

ψk(x) ∼ eikx where k ∈ R

Hence the solution to the original Schrödinger equation is

Ψk(x, t) ∼ eikx−iωkt

where Ek = ~2k2
2m

= ωk~.

These represent plane waves which are not normalisable. However we can

14
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consider superpositions over k by taking the Fourier transform of the wave
function which will give us a normalisable wave function

Ψ(x, t) =
1

2π

∫
ei(kx−ωkt)Ψ̂(k) dk

We refer to each Ψ̂(k) as a wave packet.

We now consider the Gaussian wave packet

Ψ̂(k) =

(
2a

π

) 1
4

e−a
2(k−k0)2

The contribution of each k-mode peaks at k0 with a spread ∼ 1
a2

. Inserting
into Ψ(x, t), we see that

Ψ(x, t) =
1

2π

∫
ei(kx−ωkt)

(
2a

π

) 1
4

e−a
2(k−k0)2 dk

3.2 Particle in a box

We consider a particle confined to the interval 0 ≤ x ≤ l moving freely inside.
The probability of finding the particle outside the interval must be 0 hence
we seek solutions of the free Schrödinger equation with Ψ(x) = 0 for x < 0
and x > l.
Since the Schrödinger equation is a differential equation, we require that Ψ
be continuous and differentiable. This sets a constraint of Ψ(0) = Ψ(l) = 0.
We will use the time-independent Schrödinger equation

− ~2

2m

∂2

∂x2
Ψ(x) = EΨ(x)

The general solution to Ψ(x) dependents on the sign of E.

E = 0

If E = 0, the general solution is of the form ψ(x) = A+Bx where A,B ∈ C.
The constraint ψ(0) = 0 implies that A = 0 and ψ(l) = 0 implies that B = 0.
Now, ψ(x) = 0 is not a normalisable solution hence it is impossible for E = 0.
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E < 0

If E < 0, the general solution is of the form

ψ(x) = Acosh

(√
2m|E|
~2

x

)
+Bsinh

(√
2m|E|
~2

x

)
The constraint ψ(0) = 0 implies that A = 0 and we are left with

ψ(x) = Bsinh

(√
2m|E|
~2

x

)
The second constraint ψ(l) = 0 implies that B = 0. This is because the
hyperbolic sine is non-zero everywhere except x = 0, forcing B = 0.
This solution is again impossible to normalise hence it is not possible for
E < 0.

E > 0

If E > 0, the general solution is of the form

ψ(x) = Acos

(√
2mE

~2
x

)
+Bsin

(√
2mE

~2
x

)
The constraint ψ(0) = 0 implies that A = 0 and we are left with

ψ(x) = Bsin

(√
2mE

~2
x

)
Now the constraint ψ(l) = 0 implies that√

2mE

~2
l = nπ

=⇒ 2mE

~2
=
n2π2

l2

=⇒ 2mE =
~2n2π2

l2

=⇒ E =
~2n2π2

2ml2
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where we have used the fact that the left hand side is strictly positive mean-
ing we can discard the negative solutions of the sine wave. We refer to the
discreteness of the energy by the quantisation of energy and we label each
individual energy level by En. Each n = 1, 2, 3, . . . is referred to as a quan-
tum number.

We therefore have a solution of

ψn(x) = Bsin(
nπx

l
)

We must now normalise this state:

1 =

∫
R
|ψ(x)|2 dx

= |B|2
∫ l

0

sin2
(nπx

l

)
dx

=
|B|2

2

∫ l

0

1− cos
(

2nπx

l

)
dx

=
l|B|2

2

=⇒ B =

√
2

l

Hence our final solution is

ψn(x) =

√
2

l
sin
(nπx

l

)
We can combine this with the time solution found in a previous section to
obtain a solution to the time-dependent Schrödinger equation:

Ψn(x, t) =

√
2

l
sin
(nπx

l

)
e−

i
~Ent

We shall now look at the expectation values of the position and momentum
operators.
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〈x̂〉Ψn =

∫
R

Ψ∗nxΨn dx

=
2

l

∫ l

0

xsin2
(nπx

l

)
dx

=
1

l

∫ l

0

x− xcos
(

2nπx

l

)
dx

=
1

l

[
x2

2

]l
0

+
1

l

∫ l

0

xcos

(
2nπx

l

)
dx

=
l

2
+

1

2nπ

[
xsin

(
2nπx

l

)]l
0

− 1

l

∫ l

0

sin

(
2nπx

l

)
dx

=
l

2
+
��

���
���

��:0
1

l

[
cos

(
2nπx

l

)]l
0

=
l

2

Hence we expect to find the particle at the middle of the interval.

〈x̂2〉Ψn =

∫
R

Ψ∗nx
2Ψn dx

=
1

l

∫ l

0

x2 − x2cos

(
2nπx

l

)
dx

=
1

l

[
x3

3

]l
0

− 1

l

∫ l

0

x2cos

(
2nπx

l

)
dx

=
l2

3
−
���

���
��

���
��:0

1

2nπ

[
x2sin

(
2nπx

l

)]l
0

+
1

nπ

∫ l

0

xsin

(
2nπx

l

)
dx

=
l2

3
− l

2n2π2

[
xcos

(
2nπx

l

)]l
0

+
l

n2π2

∫ l

0

cos

(
2nπx

l

)
dx

=
l2

3
− l2

2n2π2
+
���

���
���

���
�:0

l2

4n3π3

[
sin

(
2nπx

l

)]l
0

=
l2

3
− l2

2n2π2
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We can now calculate the uncertainty of the position operator acting on Ψn:

(∆x̂)2
Ψn = 〈x̂2〉Ψn − 〈x̂〉2Ψn

=
l2

3
− l2

2n2π2
− l2

4

=
l2

12
− l2

2n2π2

The expectation value of the momentum operator (and its square) can also
be calculated:

〈p̂〉Ψn =

∫
R

Ψ∗n
~
i

∂

∂x
Ψn dx

=
−i~nπ
l

∫ l

0

sin2
(nπx

l

)
cos
(nπx

l

)
sin
(nπx

l

)
dx

=
−i~nπ

2l

∫ l

0

sin2
(nπx

l

)
sin

(
2nπx

l

)
dx

=
−i~nπ

2l

∫ l

0

[
1− 2cos

(
2nπx

l

)]
sin

(
2nπx

l

)
dx

=
−i~nπ

4l

∫ l

0

sin

(
2nπx

l

)
dx+

i~nπ
4l

∫ l

0

cos

(
2nπx

l

)
sin

(
2nπx

l

)
dx

=
���

���
���

��:0
i~
8

[
cos

(
2nπx

l

)]l
0

+
i~nπ

8l

∫ l

0

sin

(
4nπx

l

)
dx

= −
���

���
���

���:
0

i~nπ
32l

[
cos

(
4nπx

l

)]l
0

= 0

We therefore expect the particle to have vanishing momentum.

〈p̂2〉Ψn =

∫
R

Ψ∗n

(
−~2 ∂

2

∂x2

)
Ψn dx

= −4nπ~2

l2

∫ l

0

sin2
(nπx

l

) ∂

∂x

[
cos
(nπx

l

)
sin
(nπx

l

)]
dx

= −2nπ~2

l2

∫ l

0

sin2
(nπx

l

) ∂

∂x

[
sin

(
2nπx

l

)]
dx
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= −4n2π2~2

l3

∫ l

0

sin2
(nπx

l

)
cos

(
2nπx

l

)
dx

= −2n2π2~2

l3

∫ l

0

[
1− cos

(
2nπx

l

)]
cos

(
2nπx

l

)
dx

= −2n2π2~2

l3

∫ l

0

cos

(
2nπx

l

)
dx+

n2π2~2

l2

∫ l

0

cos2

(
2nπx

l

)
dx

= −
���

��
���

���
�:0

nπ~2

l2

[
sin

(
2nπx

l

)]l
0

+
2n2π2~2

l3

∫ l

0

cos2

(
2nπx

l

)
dx

=
n2π2~2

l3

∫ l

0

cos

(
4nπx

l

)
+ 1 dx

=
���

���
���

���:
0

nπ~2

4l2

[
sin

(
4nπx

l

)]l
0

+
n2π2~2

l3
[x]l0 dx

=
n2π2~2

l2

We can now calculate the uncertainity of the momentum operator acting on
Ψ

(∆p̂)2
Ψn = 〈p̂2〉Ψn − 〈p̂〉2Ψn

=
n2π2~2

l2

Observation 3.2.1. The uncertainties of the position and momentum oper-
ators satisfy Heisenberg’s uncertainity principle (to be covered later):

(∆x̂)Ψn(∆p̂)Ψn =

√
l2

12
− l2

2n2π2

nπ~
l

= nπ~
√

2n2π2 − 12

24n2π2

=
nπ~

2

√
n2π2 − 6

3n2π2

=
~
2

√
n2π2 − 6

3

≥ ~
2
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Observation 3.2.2. The classical expectation value of the position agrees
with the quantum mechanical one. Since, a priori, we do not know the posi-
tion of the particle in the box, all values are equally likely and we have:

〈x〉class =
1

l

∫ l

0

x dx =
l

2
= 〈x̂〉Ψn

where 1
l

is the normalisation factor. The classical expectation value of the
square of the position does not agree however:

〈x2〉class =
1

l

∫ l

0

x2 dx =
l2

3

We see that 〈x̂2〉Ψn approaches this value as n → ∞. This is suggestive of
the correspondence principle where we expect classical physics to emerge
from quantum mechanics for large quantum numbers.

3.3 Potential barrier

We now consider the case of paticles approaching a potential barrier from
the left. The potential barrier is described by

V (x) =

{
0 if x < 0
V0 if x ≥ 0

where V0 is some real constant.

In classical mechanics, we would expect particles satisfying Ekin < V0 to
be reflected at x = 0 and to pass through the barrier if Ekin > V0. There
would be no mixing between the two states.
In quantum mechanics, there is a very different picture as we shall see.

We want to solve the time-independent Schrödinger equation for two sit-
uations:

~2

2m

∂2

∂x2
Ψ(x) = EΨ(x) for x < 0 (3.1)

~2

2m

∂2

∂x2
Ψ(x) = (E − V0)Ψ(x) for x ≥ 0 (3.2)
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We require Ψ(x) and ∂Ψ(x)
∂x

to be both continuous.

The general solution to (3.1) is

Ψ1(x) = Aeikx +Be−ikx

where k = 1
~

√
2mE. The first term of Ψ1(x) represents a plane wave coming

in from the left and the second term represents reflected plane waves.
The general solution to (3.2) is

Ψ2(x) = Ceilx +De−ilx

where l = 1
~

√
2m(E − V0)

E > V0

We can assume that for x ≥ 0, there are no particles coming from the right,
thus we can set D = 0.
We now apply the conditions of continuity of Ψ(x) and Ψ′(x) at x = 0:

Ψ1(0) = Ψ2(0) =⇒ A+B = C

Ψ′1(0) = Ψ′2(0) =⇒ k(A−B) = lC = l(A+B)

=⇒ B = A
k − l
k + l

, C = A
2k

k + l

We will now consider the probability current associated with the system.
Recall from a previous section that the probability current j is

j(x) =
~

2mi

(
Ψ(x)∗

∂

∂x
Ψ(x)−Ψ(x)

∂

∂x
Ψ(x)∗

)
We define the transmission current jt to be the probability current related
to the number of particles that get through the barrier

jt(x) =
~

2mi

(
ilC∗e−ilxCeilx + ilCeilxC∗e−ilx

)
=
l~|C|2

m

We define the reflection current jr to be the probability current related to
the number of particles that are reflected at x = 0

jr(x) =
~

2mi

(
−ikB∗eikxBe−ikx − ikBe−ikxB∗eikx

)
= −k~|B|

2

m
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We define the incoming current jin to be the probability current related
to the number of particles that are coming from the left

jin(x) =
~

2mi

(
ikA∗e−ikxAeikx + ikAeikxAe−ikx

)
=
k~|A|2

m

We can now define two useful quantities, the reflection coefficient R and
the transmission coefficient R:

R :=

∣∣∣∣ jrjin
∣∣∣∣

T :=

∣∣∣∣ jtjin
∣∣∣∣

It is easy to show that R + T = 1. In the example we have been studying,
we have that

R =

(
k − l
k + l

)2

T =
|4kl|

(k + l)2

We now see that in this case, even though E > V0, there is a non-vanishing
probability that a quantum mechanical particle will be reflected at the bar-
rier. This is a stark difference from classical mechanics.

E < V0 In this case, the solution for (3.2) is

Ψ2(x) = C ′e−l
′x +D′el

′x

where l′ = 1
h

√
2m(V0 − E).

We can once again set D′ = 0 so we are left with

Ψ2(x) = C ′e−l
′x

The continuity conditions of Ψ and Ψ′ imply that A+B = C ′ and k(A−B) =
−l′C ′. This gives us

B = A
k − il′

k + il′

C ′ = A
2k

k + il′
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We see that C 6= 0 hence there is a non-zero probability of finding a quantum
mechanical particle beyond the barrier, despite the fact that E < V0. This
is an example of the tunneling effect.

3.4 Potential well

We will now look at an example of a system involving a potential well de-
scribed by

V (x) =

{
−V0 if − l ≤ x ≤ l
0 if |x| > l

for some real constant V0 > l.
We see that since V (x) = V (−x) and ∂2

∂x2
= ∂2

∂(−x)2
, the Hamilton operator Ĥ

is invariant under x 7→ −x. This implies that if ψ(x) satisfies Ĥψ(x) = Eψ(x)
then so does ψ(−x). Therefore ψev(x) := 1

2
(ψ(x) + ψ(−x)) and ψodd(x) :=

1
2
(ψ(x)−ψ(−x)) are also both solutions of the Schrödinger equation, We can

therefore look for even and odd solutions seperately. We restrict ourselves to
the case of even functions for the moment and distinguish two cases:

−V0 < E < 0 This case represents the bound state particles - in other word,
particles in a bounded region of space. Substituting the potential into the
time-independent Schrödinger equation, we have that

ψ′′(x) =

{
k2
outψ(x) if |x| > l
−k2

inψ(x) if |x| ≤ l

where kout = 1
~

√
−2mE and kin = 1

~

√
2m(E + V0) It follows that the solution

is

ψ(x) =


AeKoutx if x < −l
B cos(kinx) if |x| ≤ l
Ae−koutx if x > l

Now, the continuity of ψ(x) and ψ′(x) at x = −l implies that

Ae−koutl = B cos(kinl)

Akoute
−koutl = Bkin sin(kinl)

Dividing the first equation by the second, we have that

kout = kin tan(kinl) (3.3)
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In addition, from the definition of kout and kin we have that

k2
out + k2

in =
1

~2
(−2mE + 2mE + 2mV0)

=
2m

~2
V0 (3.4)

From graph of Equation (3.4) is simply a circle. Taking the intersection of
this graph and that of Equation (3.3) (in the Kout −Kin plane), we see that
there are only finitely many solutions for kout and kin. This implies that there
are only finitely many values that the energy of the bound states can take.
In other words, the energy for the bound states are quantised.

3.5 Particle in a delta potential

Consider a potential V (x) = −V0δ(x) where V0 is a positive real constant
and δ is the delta ’function’ (distribution) defined by∫ ∞

−∞
f(x)δ(x) dx = f(0)

We want to solve the time-independent Schrödinger equation for this poten-
tial with the extra condition that the solution is continuous everywhere.
Now, δ(x) behaves like an infinitely high peak concentrated at x = 0. Hence
we can assume that δ(x) = 0 for x 6= 0. We have the following for the
Shrödinger equations away from x = 0:

−h2

2m

∂2

∂x2
ψI(x) = EψI(x) for x < 0 (3.5)

−h2

2m

∂2

∂x2
ψII(x) = EψII(x) for x < 0 (3.6)

The general solutions to Equations (3.5) and (3.6) are as follows

ψI(x) = Aeikx +Be−ikx

ψII(x) = Ceikx +De−ikx

where k2 = 2mE
~2 and A,B,C,D are some complex constants. We now con-

sider only the case where E < 0 for normalisable solutions:

E < 0 If E < 0 then k is imaginary. Take k = iK for some positive real
constant K. We require normalisable wave functions so we must have that
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ψI(x) → 0 for x → −∞ and ψII(x) → 0 for x → ∞. The general solutions
are in the form

ψI(x) = Ae−Kx +BeKx

ψII(x) = Ce−Kx +DeKx

We see that in order for these equations to be normalisable, we must have
that A = D = 0. Now the requirement of continuity at x = 0 means that
limε→0 ψI(ε) = limε→0 ψII(ε) (we require the use of limits as these functions
are not defined at 0). This is only true if B = C.
Now we consider the Schrödinger equation including the point x = 0

−~2

2m

∂2

∂x2
ψ(x)− V0δ(x)ψ(x) = Eψ(x)

Rearranging to isolate the derivative it follows that

∂2

∂x2
ψ(x) =

−2mE

~2
ψ(x)− 2mV0

~2
δ(x)ψ(x)

Integrating both sides with respect to x between −ε and ε (for some real
constant ε) and then applying the fundamental theorem of calculus yields

ψ′(ε)− ψ′(−ε) =
−2mE

~2

∫ ε

ε

ψ(x) dx− 2mV0

~2

∫ ε

ε

ψ(x)δ(x) dx (3.7)

From previous analysis of the general solution, we know that ψ(0) = B.
Combining this with the definition of the delta function, Equation (3.7) be-
comes

ψ′(ε)− ψ′(−ε) =
−2mE

~2

∫ ε

ε

ψ(x) dx− 2mBV0

~2
dx (3.8)

We can also see that

ψ′(ε)− ψ′(−ε) =
∂

∂x
ΨII(x)

∣∣∣∣
x=ε

− ∂

∂x
ΨI(x)

∣∣∣∣
x=−ε

= −BKe−Kε −BKeKε

Now taking the limit ε → 0 of Equation (3.8) with the above, we are left
with

−2BK = −−2mBV0

~2
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this implies that K = mV0
~2 . Now since K = ik, we have that

mV0

~2
= ik

m2V 2
0

~4
= −k2

m2V 2
0

~4
= −2mE

~2

E = −mV
2

0

2~2

We see that the delta potential admits one bound state (solution with nor-

malisable wave function) with energy E = −mV 2
0

2~2 .



Chapter 4

General Formulation of
Quantum Mechanics

4.1 Hilbert spaces

Definition 4.1.1. Let V be a vector space over C. We define a scalar
product 〈·, ·〉 on V to be a map 〈·, ·〉 : V × V → C satisfying the following
axioms:

1. 〈x, y〉 = 〈y, x〉∗

2. 〈x, λy + µz〉 = λ〈x, y〉+ µ〈x, z〉

3. 〈x, x〉 ≥ 0 with equality if and only if x = 0

where x, y, z ∈ V and λ ∈ C.

Definition 4.1.2. Let V be a vector space equipped with a scalar product 〈·, ·〉.
We define an orthonormal basis to be a basis {ψi}i∈I with 〈ψi, ψj〉 = δij
for all i, j ∈ I.

Remark. Let V be a vector space {ψi}i∈I be an orthonormal basis of V. Let
x, y ∈ V . Then we can express x and y in terms of the basis as follows:∑

i∈I

αiψi, y =
∑
j∈J

βjψj

where αi, βi ∈ C. It follows that

〈x, y〉 =
∑
i,j

α∗iβj〈ψi, ψj〉 =
∑
i,j

α∗iβjδij =
∑
i

α∗iβi

28
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Definition 4.1.3. Let V be a vector space and {ψi}i∈I ⊆ V a sequence. We
say that {ψi}i∈I converges to ψ ∈ V if limn ||ψn − ψ|| = 0.

Definition 4.1.4. Let V be a vector space and {ψn}n∈N ⊆ V a sequence. We
say that {ψn}n∈N is a Cauchy sequence if

∀ ε > 0,∃n ∈ N s.t ||ψn − ψm|| < ε ∀n,m ∈ N

Let V be a vector space. We say that V is complete if every Cauchy
sequence in V converges.

Definition 4.1.5. Let V be a vector space over C that is complete and
equipped with a scalar product. Then we say that V is a Hilbert space
and we denote it by H.

Definition 4.1.6. Let H be a Hilbert space. We say that H is seperable if
it has a countable basis.

Example 4.1.7. H = CN with the standard scalar product

〈x, y〉 =
N∑
i=1

x∗i yi

Example 4.1.8.

H = l2 :=

{
(a1, a2, . . . )

∣∣∣∣∣ ai ∈ C,
∞∑
i=1

|ai|2 <∞

}
with the scalar product

〈a, b〉 :=
∞∑
i=1

a∗i bi

Example 4.1.9.

H = L2(Rd) =

{
f : Rd → C

∣∣∣∣ ∫
Rd
|f(x)|2 ddx <∞

}
with the scalar product

〈f, g〉 :=

∫
Rd
f ∗(x)g(x) ddx
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L2(Rd) is seperable. For example, with d = 1, the functions

ψm(x) := xme−x
2

with m ∈ N form a basis for L2(R)

Definition 4.1.10. Let V be a vector space over the complex numbers. The
dual space of V is

V := {f : V → C | f is linear and continuous w.r.t the metric on V }

Any vector ψ ∈ V gives an element Lψ ∈ V ∗.

Example 4.1.11. Let V be a vector space and V ∗ its dual. Let ψφ,∈ V and
consider the function Lψ(φ) := 〈ψ, φ〉. It is indeed linear since 〈·, ·〉 is linear
in the second argument. We can also see that if Lψ 6= Lφ if ψ 6= φ. It follows
that V injects into its dual space.
If V = H is a Hilbert space then it can be shown that any L ∈ H is of the
form L = Lφ for some φ ∈ H and hence H ∼= H∗.
We note that the map φ→ Lφ is anti-linear:

Lα1ψ1+α2ψ2 = α∗1Lψ1 + α∗2Lψ2

∀αi ∈ C, ∀ψi ∈ H

Notation 4.1.12. Let H be a Hilbert space and ψ, φ ∈ H. We rewrite 〈ψ, ψ〉
as 〈ψ|ψ〉 and seperate the scalar product into two seperate entities 〈ψ| ∈ H∗
(bra) and |φ〉 ∈ H (ket). This is referred to as Dirac’s bra-ket notation.

Remark. Dirac’s notation allows us to write down objects such as |φ〉 〈ψ|
and determine what they do easily. (|φ〉 〈ψ|) |x〉 = |φ〉 〈φ|x〉. Hence |φ〉 〈ψ| is
just a linear map from H → H.

4.2 Linear operators

Definition 4.2.1. Let H be a Hilbert space. A linear operator is a map
A : H → H where A(λx+ µy) = λAx+ µAy ∀x, y ∈ H,∀λ, µ ∈ C.

Definition 4.2.2. Let H be a Hilbert space and A a linear operator on H.
The adjoint of A is the linear operator A† defined by

〈x,A†y〉 = 〈Ax, y〉

for all x, y ∈ H.
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Definition 4.2.3. Let H be a Hilbert space and A a linear operator on H.
We say that A is self-adjoint if A = A†.

Definition 4.2.4. Let H be a Hilbert space and A a linear operator on H.
We say that A is unitary if UU † = U †U = 1H

Proposition 4.2.5. Let H be a Hilbert space and A a self adjoint operator.
Then U = eiA is unitary.

Proof. It suffices to show that U † = U−1. First consider e defined as a power
series. Then

U † =
(
eiA
)†

= e(iA)† = e−iA
†

= e−iA = U−1

as required.

Definition 4.2.6. Let H be a Hilbert space. We define the othogonal com-
plement of ψ in H to be the set

ψ⊥ := {ϕ ∈ H | 〈ϕ, ψ〉 = 0}

Remark. For a self adjoint operator, we have that Aψ⊥ ⊆ ψ⊥

Example 4.2.7. H = CN equipped with the standard inner product. The
linear operators are N ×N matrices A over C where A† = (AT )∗.

Example 4.2.8. Let H be any Hilbert space and |ψ〉 ∈ H a normalised vector
(i.e 〈ψ|ψ〉 = 1). Then Pψ := |ψ〉 〈ψ| is a self adjoint operator with P 2

ψ = Pψ.
It is referred to as a projection operator.

Example 4.2.9. H = L2(R). An example of a linear operator on this space
is the parity operator P defined by (Pψ)(x) = ψ(−x). It is self adjoint
and unitary.
The position operator x̂ defined by (x̂ψ)(x) = xψ(x). We can see that it
is only defined (and hence self-adjoint) for certain elements of H. Indeed,
〈ψ1|xψ2〉 = 〈xψ1|ψ2〉. But ψ ∈ L2(R) does not imply that x̂Ψ ∈ L2(R).
We also face the same problem with the momentum operator p̂ψ(x) = h

i
∂
∂x
ψ(x).

We require that ψ be differentiable almost everywhere and for it and its
derivative to be square integrable.
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Remark. Further to the previous example, we also note that the eigenvectors
of such operators may not be in L2(R). For example, p̂ = ~

i
∂
∂x

has eigenfunc-
tions ψk(x) = eikx for some real constant k. This is not a square integrable
function.

Theorem 4.2.10. (Spectral Theorem)
Let H be a Hilbert space. Let A : H → H be a self adjoint operator. Then
there exists an orthonormal basis ψ1, . . . , ψN of H made up of eigenvectors
of A. In that basis, A =

∑
n an |ψn〉 〈ψn| where an are the eigenvalues of A0

Proposition 4.2.11. Let H be a Hilbert space and A a self adjoint operator
on H with eigenvalues ai for 1 ≤ i ≤ n. Let |ψ〉 ∈ H be a normalisable state.
Furthermore, let {ψm} be an orthonormal basis for H. Then the expectation
value 〈A〉ψ can be given by:

〈A〉ψ =
∑
l

|cl|2al

where the ci are the {ψm}-coordinates of |ψ〉 and the summation index l runs
over the set of eigenvalues of A.

Proof. We can express |ψ〉 in terms of the orthonormal basis as follows:

|ψ〉 =
∑
n

cn |ψn〉

for some cn ∈ C. We therefore have that

〈A〉ψ = 〈ψ|Aψ〉

=
∑
n,m

c∗ncm 〈ψn|Aψm〉



CHAPTER 4. GENERAL FORMULATIONOF QUANTUMMECHANICS33

Applying the spectral theorem yields

〈A〉ψ =
∑
n,m,l

c∗ncm 〈ψn| al |ψl〉 〈ψl|ψm〉

=
∑
n,m,l

c∗ncmal 〈ψn|ψl〉 〈ψl|ψm〉

=
∑
n,m,l

c∗ncmalδnlδml

=
∑
l

c∗l clal

=
∑
l

|cl|2al

Remark. This allows us the refine the interpretation of the expectation value.
〈A〉ψ is the mean value and the probability of obtaining the result al when

measuring A, in a system of state ψ, is given by |cl|2.
We can also formulate this in terms of projection operators. Let A =

∑
n an |ψn〉 〈ψn|

be a self adjoint operator with eigenvalues an and |ψn〉 an orthonormal ba-
sis of eigenstates. For a given eigenvalue a of A, we define the projection
operator onto the a-eigenspace of A by:

PA
a : H → H

PA
a =

∑
m s.t A|ψm〉=a|ψm〉

|ψm〉 〈ψm|

Then the probability of finding a when measuring A, if the system is in the
state |ψ〉 is

p(a) = 〈ψ, PA
a ψ〉

Proposition 4.2.12. Let H be a Hilbert space and A and B self-adjoint
operators on H. Then AB = BA if and only if there exists an orthonormal
basis |ψn〉 of H consisting of common eigenvectors of A and B.

Proof. We prove only the forward direction. Let Aψ = aψ were ψ is an
eigenvector of A and a its corresponding eigenvalue. We have that ABψ =
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BAψ = aBψ. Therefore Bψ is again an A-eigenvector with the same eigen-
value as ψ. It follows that B maps the a-eigenspace of A into itself. We can
hence find an orthonormal basis of B-eigenvectors inside the a-eignspace as
required.

4.3 Axioms of Quantum Mechanics

We shall now formulate Quantum Mechanics in a more abstract fashion using
the following axioms:

1. The state of a quantum mechanical system is described by normalised
elements ψ of a Hilbert space H

2. • Measurable quantities are described by self-adjoint operators A :
H → H
• The only possible measurements of A are eigenvalues a of A

• If the system is in the state ψ, the probability of finding a as a
result of measuring A is p(a) = 〈ψ, PA

a ψ〉 where PA
a : H → H is

the projection onto the a-eigenspace of A.

• Immediately after a measurement of A that results in a, the system
is in an eigenstate ψa of A. This is known as the collapse of the
wave function.

3. The time evolution of the system is determined by the Hamliltonian
operator H where i~ ∂

∂t
ψ(t) = Hψ(t)

4.4 Heisenberg’s Uncertainty Relation

Notation 4.4.1. Let A and B be two objects that can be multiplied together.
Their commutator is denoted [A,B] and is equal to AB −BA.

Lemma 4.4.2. Let A and B two self adjoint operators. Then C := −i[A,B]
is also a self adjoint operator.
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Proof. Consider a normalised state ψ. We want to show that 〈ψ,Cψ〉 =
〈Cψ,ψ〉. We have that

〈ψ,Cψ〉 = 〈ψ,−i(AB −BA)ψ〉
= 〈ψ,−iAB + iBA)ψ〉
= −i 〈ψ,ABψ〉+ i 〈ψ,BAψ〉

Now, since A and B are both self adjoint, we have that

〈ψ,Cψ〉 = −i 〈Aψ,Bψ〉+ i 〈Bψ,Aψ〉
= −i 〈BAψ,ψ〉+ i 〈ABψ,ψ〉
= i 〈(AB −BA)ψ, ψ〉
= 〈−i(AB −BA)ψ, ψ〉
= 〈Cψ,ψ〉

as required.

Theorem 4.4.3. Let A and B be two observables and ψ a normalised state.
Then

(4A)ψ(4B)ψ ≥
1

2

∣∣∣〈[A,B]〉ψ
∣∣∣

Proof. Let C := −i[A,B]. Then by the previous lemma, C is self adjoint.
Now set a := A − 〈A〉ψ and b := B − 〈B〉ψ. Then it can easily be checked
that C = −i[a, b]. Now,

(4A)2
ψ(4B)2

ψ = 〈(A− 〈A〉ψ)2〉
ψ
〈(B − 〈B〉)2〉ψ

= 〈a2〉ψ 〈b
2〉ψ

= 〈ψ, a2ψ〉 〈ψ, b2ψ〉
= 〈aψ, aψ〉 〈bψ, bψ〉

Applying the Cauchy-Schwarz inequality yields

(4A)2
ψ(4B)2

ψ ≥ | 〈aψ, bψ〉 |2
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It is easily checked that a and b are themselves self-adjoint. Therefore

(4A)2
ψ(4B)2

ψ ≥ | 〈ψ, abψ〉 |2

=

∣∣∣∣〈ψ, 1

2
(ab+ ba) +

1

2
(ab− ba)ψ

〉∣∣∣∣2
We now note that ab− ba = [a, b] = iC and thus

(4A)2
ψ(4B)2

ψ ≥
∣∣∣∣12 〈ψ, (ab+ ba)ψ〉+

i

2
〈ψ,Cψ〉

∣∣∣∣2
We can again show that ab+ba is a self adjoint operator and hence, by Propo-
sition 2.3.8, both scalar products in the above inequality are real numbers.
Thefore

(4A)2
ψ(4B)2

ψ ≥
1

4
| 〈ψ, (ab+ ba)ψ〉 |2 +

1

4
| 〈ψ,Cψ〉 |2

≥ 1

4
| 〈[A,B]〉ψ |

2

as required.



Chapter 5

Further Examples

5.1 The Harmonic Oscillator

In this section we consider a quantum mechanical system with a Hamiltonian
given by

Ĥ =
p̂2

2m
+
mω2

2
x̂2

where ω is some constant with unit s−1. This Hamiltonian describes a har-
monic oscillator. In classic treatments, a potential of V = 1

2
kx2 leads to a

force F = −kx - Hooke’s law for mass attached to a spring. Solutions are
given by x(t) = x0 cos(ωt− ϕ0) for some constants x0, ϕ0. The total energy
E = Ekin + Epot ≥ 0 is conserved but it otherwise arbitrary.

Now treating the system quantum mechanically, we will find the energy
spectrum. This is given by the eigenvalues of Ĥ. Since the potential di-
verges for x → ±∞, we will always have that the energy E of the system
satifies E < V (∞) and E < V (−∞). Hence all states will be bounded states
(energy is bounded to some finite interval; as opposed to scattering states).
This implies that all eigenstates |ψ〉 of Ĥ are normalisable.

37
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Proposition 5.1.1. Consider the position operator ~x and the momentum
operator ~p. These operators satisfy the following relations:

1. x̂† = x̂

2. p̂† = p̂

3. [x̂, p̂] = i~

Proof. Let |ψ〉 be a normalised state.

Part 1 We need to show that 〈ψ|x̂ψ〉 = 〈x̂ψ|ψ〉. Indeed

〈ψ|x̂ψ〉 =

∫
R3

ψ∗xψ d3x

=

∫
R3

(x∗ψ)∗ψ d3x

=

∫
R3

(xψ)∗ψ d3x

= 〈x̂ψ|ψ〉

Part 2 We need to show that 〈ψ|p̂ψ〉 = 〈p̂ψ|ψ〉. We shall only consider the
integral over one dimension for simplicity:

〈ψ|x̂ψ〉 =

∫
R
ψ∗p̂ψ dx

=

∫
R
ψ∗i~

∂

∂x
ψ dx

= i~
(

[ψ∗ψ]∞∞ −
∫
R

[
∂

∂x
ψ∗
]
ψ dx

)
=
i

~

(
��

���:0
[|ψ|2]∞∞ −

∫
R

[
∂

∂x
ψ∗
]
ψ dx

)
=

∫
R

[
i~
∂

∂x
ψ∗
]
ψ dx

= 〈p̂ψ|ψ〉
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Part 3 We have that

〈ψ|[x̂, p̂]ψ〉 = 〈ψ|x̂p̂ψ〉 − 〈ψ|p̂x̂ψ〉 dx

= −i~
∫
R
ψ∗x

∂

∂x
ψ dx+ i~

∫
R
ψ∗

∂

∂x
(xψ) dx

= −i~
∫
R
ψ∗x

∂

∂x
ψ dx+ i~

∫
R
ψ∗(ψ + xψ′) dx

= i~
∫
R
ψ∗ψ dx

= i~ 〈ψ|ψ〉 dx
= i~

Definition 5.1.2. We define the annihilation operator (or lowering
operator) a to be

a := i

(
1

2~mω

) 1
2

p̂+
(mω

2~

) 1
2
x̂

and the creation operator a† to be

a† :=
(mω

2~

) 1
2
x̂− i

(
1

2~mω

) 1
2

p̂

which is just the adjoint of a.
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Proposition 5.1.3. The annilation and creation operators a and a† satisfy
the relation [a, a†] = 1.

Proof. We have that

[a, a†] =

[
i

(
1

2~mω

) 1
2

p̂+
(mω

2~

) 1
2
x̂

][(mω
2~

) 1
2
x̂− i

(
1

2~mω

) 1
2

p̂

]

−

[(mω
2~

) 1
2
x̂− i

(
1

2~mω

) 1
2

p̂

][
i

(
1

2~mω

) 1
2

p̂+
(mω

2~

) 1
2
x̂

]
=

i

2~
p̂x̂+

mω

2~
x̂2 +

1

2~mω
p̂2 − i

2~
x̂p̂− i

2~
x̂p̂− 1

2~mω
p̂2 − mω

2~
x̂2 +

i

2~
p̂x̂

=
i

2~
p̂x̂− i

2~
x̂p̂− i

2~
x̂p̂+

i

2~
p̂x̂

=
i

2~
(p̂x̂− x̂p̂− x̂p̂+ p̂x̂)

=
i

2~
(−2[x̂, p̂])

=
i

~
(−i~)

= 1

Remark. From the above proof, we see that a†a = −1
2
+ 1

~ω

(
mω2

2
x̂2 + ~2

2m
p̂2
)

=

1
~ω Ĥ−

1
2
. It thus follows that we can write the Hamiltonian for the harmonic

oscillator as

Ĥ = ~ω
(
a†a+

1

2

)
Therefore the eigenvalues (and therefore the energies) of Ĥ can be determined
if we know the eigenvalues of N := a†a, the number operator.

Proposition 5.1.4. The eigenvalues of the number operator N = a†a are
all real and positive.

Proof. It is obvious that N = a†a is self adjoint therefore its eigenvalues are
all real by Proposition 2.3.8. Now let N |ψν〉 = ν |ψν〉 for some ν ∈ R and
|ψν〉 6= 0. Then ν 〈ψν |ψν〉 = 〈ψν |Nψν〉 = 〈ψν |a†aψν〉 = 〈aψν |aψn〉 ≥ 0 where
in the last equality we have used the fact that the scalar product of a vector
with itself is always greater than or equal to 0.
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Proof. Such self adjoint operators with non-negative eigenvalues are called
positive operators.

Lemma 5.1.5. The number, annihilation and creation operators satisfy the
two relations [N, a†] = a† and [N, a] = −a.

Proof. We have that

[N, a†] = a†aa† − a†a†a = a†(aa† − a†a) = a†[a, a†] = a†

[N, a] = a†aa− aa†a = (a†a− aa†)a = −[a, a†] = −a

Theorem 5.1.6. The set of eigenvalues of the number operator is exactly
N ∪ {0}.

Proof. Assume that |ψν〉 is a normalised eigenstate of N with eigenvalue ν.
By the previous lemma, we have that

Na |ψν〉 = ([N, a] + aN) |ψν〉
= (−a+ aN) |ψν〉
= −a |ψν〉+ aν |ψν〉
= (ν − 1)a |ψν〉

Hence either a |ψν〉 = 0 or a |ψν〉 is an eigenstate of N with eigenvalue of
ν − 1.
By a similar approach to the above, the previous lemma also implies that

Na† |ψν〉 = (ν + 1)a† |ψν〉

Therefore, either a† |ψν〉 = 0 or a† |ψν〉 is an eigenstate of N with eigenvalue
ν + 1.
Continuining as above, it follows that

Na2 |ψν〉 = (ν − 2)a2 |ψν〉
...

Nak |ψν〉 = (ν − k)ak |ψν〉
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Now consider the norms of these eigenstates, we have that

||ψν ||2 = 〈ψν |ψν〉 = 1

||aψν ||2 = 〈aψν |aψν〉 = 〈ψν |a†aψν〉 = 〈ψν |Nψν〉 = 〈ψν |νψν〉 = ν 〈ψν |ψν〉 = ν

||a2ψν ||2 = 〈a2ψν |a2ψν〉 = 〈ψν |a†a†aaψν〉 = 〈ψν |a†Naψν〉
= 〈ψν |a†(ν − 1)aψν〉 = (ν − 1) 〈ψν |Nψν〉 = ν(ν − 1)

...

||akψν ||2 = ν(ν − 1) . . . (ν − k + 1)

It is clear that, given large k, this expression will be negative unless ν ∈
N∪{0}. But this is not possible since ||ψ||2 ≥ 0 for any normalised ψ. Hence
the set of allowed eigenvalues ν of N is exactly N ∪ {0}.

Remark. From this proof, it follows that the only allowed eigenvalues of the
Hamiltonian are Eν = ~ω

(
ν + 1

2

)
.

We have therefore determined all possible energies of the quantum har-
monic oscillator - we indeed find that energy is once again quantised.

Now assume that the eigenstate ψ0, with the lowest possible eigenvalue such
that ν = 0, exists (the so-called ground state). We have that Nψ0 = 0
and ||ψ0||2 = 1. We can construct higher level eigenstates using the creation
operator a†. From the previous proof, we have the following:

N(a†)k |ψ0〉 = k(a†)k |ψ0〉
||(a†)kψ0||2 = k(k − 1) . . . 2 · 1 = k!

for k = 0, 1, . . . . We can hence apply a normalising factor 1√
n!

and write

ψn =
1√
n!

(a†)nψ0

We therefore have Nψn = nψn for n = 0, 1, . . . .

We note that if n = 0 then the energy for the Harmonic oscillator is E0 =
1
2
~ω > 0. This suggests that quantum oscillations can never be completely

stopped - even in vacuum.
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Now, since N is a self adjoint operator, the eigenstates ψn form an orthonor-
mal basis. We can thus find the matrix elements of a†:

(a†)nm = 〈ψn| a† |ψm〉 =
√
m+ 1 〈ψn|ψm+1〉 =

√
m+ 1δn,m+1

To find the matrix elements of a, we use the definition of [a, a†] and N :

[a, a†]ψn = ψn

=⇒ aa†ψn − a†aψn = ψn

=⇒ a
√
n+ 1ψn+1 −Nψn = ψn

=⇒
√
n+ 1aψn+1 − nψn = ψn

=⇒
√
n+ 1aψn+1 = ψn(n+ 1)

=⇒ aψn+1 =
1√
n+ 1

ψn

Using this, we find that

(a)nm = 〈ψn| a |ψm〉 =
√
mδn,m−1

We cam immediately see that a† is the adjoint of a andN = a†a = diag(0, 1, 2 . . . ).
We also have the following formulations for the momentum and position op-
erator (as infinite matrices):

(p̂)n,m = i

√
~mω

2

(√
nδn,m+1 −

√
n+ 1δn,m−1

)
(x̂)n,m =

√
~

2mω

(√
nδn,m+1 +

√
n+ 1δn,m−1

)
It now suffices to find the explicit form of the ground state ψ0. We can then
express all eigenstates in terms of this function.

Obviously, ψ0 should satisfy aψ0 = 0. We have that

a =
1√
2

[(mω
~

) 1
2
x̂+ i

(
1

~mω

)
p̂

]
=

1√
2

(
1

x0

x̂+ x0
∂

∂x

)
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where x0 =
√

~
mω

. Now we use the change of variables ξ = x
x0

to get(
ξ +

∂

∂ξ

)
ψ0(ξ) = 0

This has solution

ψ0(ξ) = Ae−
ξ2

2

for some constant A. By normalising this state, we arrive at

ψ0(ξ) =
1

π1/4
e−

ξ2

2

which is just a Gauss curve. Now using the formula we obtained earlier for
the higher excited states, it follows that

ψn(ξ) =
1

n!2n
√
π

(
ξ − ∂

∂ξ

)n
e−

ξ2

2

5.2 Two-state systems

Example 5.2.1. Consider the Hamiltonian given by the matrix

H =

(
E1 0
0 E2

)
where E1 6= E2 are some real constants. The eigenstates are given by

|e1〉 =

(
1
0

)
|e2〉 =

(
0
1

)
with H |ej〉 = Ej |ej〉 for j = 1, 2. Now consider the observable (self adjoint
operator)

S =

(
0 1
1 0

)
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Through some easy linear algebra, we find the normalised eigenstates of this
observable to be

|ψ1〉 =
1√
2

(
1
1

)
=

1√
2

(|e1〉+ |e2〉)

|ψ2〉 =
1√
2

(
1
−1

)
=

1√
2

(|e1〉 − |e2〉)

with S |ψ1〉 = |ψ1〉 and S |ψ2〉 = − |ψ2〉.
We note that since H and S do not commute, Proposition 4.2.12 implies that
there is no orthonormal basis consisting of common eigenstates of H and S.

Recall that if ψ̃ satisfies the time independent Schrödinger equation Hψ̃ =
Eψ̃, then a solution of the full time-dependent Schrödinger equation i~∂ψ(t)

∂t
=

Hψ(t) is given by

ψ(t) = ψ̃e−
i
~Et

where we have assumed that the potential is time independent.
Now if ψ̃1, ψ̃2, . . . is an orthonormal basis of H consisting of H-eigenstates,
satisfying Hψ̃n = Enψ̃n, we have that for an aribtrary state ψ ∈ H

ψ = ψ(t = 0) =
∑
n

cn(t = 0)ψ̃n

for some cn ∈ C. At time t, the state therefore becomes

ψ(t) =
∑
n

cn(t = 0)e−
i
~Entψ̃n

We see that in general, the state ψ evolves in a non-trivial manner. The
coefficients cn(t) depend on t. We illustrate this in the following example.

Assume that that time t = 0, S is measured and the resulting eigenvalue is
1. We know, by the axioms of quantum mechanics, that the system collapses
into the corresponding eigenstate |ψ1〉. Hence at time t = 0, the probability
Pt=0(S = 1) to find S = 1 is 1 and Pt=0(S = −1) = 0.
Now, ψt=0 = 1√

2
e1 + 1√

2
e2. Through the above description of time evolution

of linear combinations of energy eigenstates, we have that

ψ(t) =
1√
2
e
−i
~ E1te1 +

1√
2
e
−i
~ E2te2
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If we measure S again, at a time t > 0, the probability of finding S = 1
and S = −1 are

Pt(S = 1) = | 〈ψ1|ψ(t)〉 |2 =

∣∣∣∣〈 1√
2
e1 +

1√
2
e2

∣∣∣∣ 1√
2
e
−i
~ E1te1 +

1√
2
e
−i
~ E2te2

〉∣∣∣∣2
=

∣∣∣∣〈 1√
2
e1 +

1√
2
e2

∣∣∣∣ 1√
2
e
−i
~ E1te1

〉
+

〈
1√
2
e1 +

1√
2
e2

∣∣∣∣ 1√
2
e
−i
~ E2te2

〉∣∣∣∣2
=

∣∣∣∣〈 1√
2
e1

∣∣∣∣ 1√
2
e
−i
~ E1te1

〉
+

〈
1√
2
e2

∣∣∣∣ 1√
2
e
−i
~ E1te1

〉
+

〈
1√
2
e1

∣∣∣∣ 1√
2
e
−i
~ E2te2

〉
+

〈
1√
2
e2

∣∣∣∣ 1√
2
e
−i
~ E2te2

〉∣∣∣∣2
=

∣∣∣∣∣12e−i~ E1t 〈e1 | e1〉+
���

���
���:01

2
e
−i
~ E1t 〈e2 | e1〉+

���
���

���:01

2
e
−i
~ E2t 〈e1 | e2〉+

1

2
e
−i
~ E2t 〈e2 | e2〉

∣∣∣∣∣
2

=
1

4

∣∣∣e−i~ E1t + e
−i
~ E2t

∣∣∣2
Now through some simple algebra, we can see that that the substitution
U = E1−E2

2~ t gives us

Pt(S = 1) = cos2(U)

= cos2

(
E1 − E2

2~
t

)

Pt(S = −1) = 1− cos2

(
E1 − E2

2~
t

)
= sin2

(
E1 − E2

2~
t

)
We see that if we wait a while before measuring again, it is no longer certain
that we will find S = 1 again. Therefore if the system is not in an energy
eigenstate after the first measurement at t = 0, it will evolve away from the
state that it collapsed into.

Example 5.2.2. Now we switch our view to several non-commuting observ-
ables. Let the Hamiltonian H = 0 (implying there is no time evolution).
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Consider the three self adjoint operators Sj := ~
2
σj for j = 1, 2, 3 where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices satisfying the commutation relation [Sj, Sk] = i~εjklSl.
The Heisenberg uncertainty relation implies that we cannot have a state in
which both the measurements of S1 and S3 can be predicted with certainity.
Consider S3 = ~

2
σ3. Obviously the eigenstates are

e1 =

(
1
0

)
, e2 =

(
0
1

)
with corresponding eigenvalues ~

2
and −~

2
.

Now assume that the system is in the state |ψ〉 = |e1〉 (for example, after an
S3 measurement that produced ~

2
). Now measure S1. This also has eigenval-

ues ±~
2

but with eigenstates

ψ+ =
1√
2

(
1
1

)
, ψ− =

1√
2

(
1
−1

)
Therefore the outcomes of the measurement have probabilities

| 〈ψ+|e1〉 |2 =

∣∣∣∣ 1√
2
〈(1, 1)|(1, 0)〉

∣∣∣∣2 =
1

2
| 〈ψ+|e1〉 |2 = 1− 1

2
=

1

2

Therefore we cannot say anything about the outcome of the measurement of S1

after we have made an S3 measurement. If we measure S3 again, we will find
the same probabilities as above: measuring S1 has destroyed all information
that came from the previous S3 measurement.

5.3 Angular momentum

Definition 5.3.1. Consider a classical Newtonian system. Then the angu-
lar momentum ~L of a body is defined to be

~L = ~x× ~p

where ~x is the body’s position and ~p is its momentum.
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Remark. The above definition is an important one and we should expect a
similar quantity to arise in quantum mechanics. The angular momentum is
used, in classical mechanics, to compute the orbits of planets in the solar sys-
tem under the influence of the force of gravity and their angular momentum
is conserved. We have the analogous situation in quantum mechanics where
electrons orbit around the nucleus of a Hydrogen atom under the influence
of the Coulomb potential. The quantum mechanical equivalent of the angular
momentum is also conserved in this case.

Definition 5.3.2. Consider a Hilbert space H and the canonical operators x̂
and p̂ acting on H. We define the angular momentum ~L to be the three
dimensional vector with coordinates given by

Lj = εjklxkpl

where xi and pi are understood to be the position and momemntum operators
projected onto the ith coordinate.

Proposition 5.3.3. The angular momentum satisfies the following commu-
tation relation

[Lj, Lk] = i~εjklLl

Proof. We have that

[Lj, Lk] = LjLk − LkLj
= εjabxapbεkcdxcpd − εkcdxcpdεjabxapb
= εjabεkcd(xapbxcpd − xcpdxapb)
= εjabεkcd[xapb, xcpd]

Now we use the relation [ab, c] = a[b, c] + [a, c]b. Applying this we get

[Lj, Lk] = εjabεkcd(xa[pb, xcpd] + [xa, xcpd]pb)

= εjabεkcd([xcpd, xa]pb + xa[xcpd, pb])

= εjabεkcd((xc[pd, xa] + [xc, xa]pd)pb + xa(xc[pd, pb] + [xc, pb]pd))

= εjabεkcd(xc[pd, xa]pb + xa[xc, pb]pd)

= −i~εjabεkcd(δdaxcpb − δcbxapd)
= −i~εjdbεkcdxcpb + i~εjabεkbdxapd
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= i~εdjbεkcdxcpb + i~εjabεkbdxapd
= i~εdjbεdkcxcpb + i~εbjaεbdkxapd
= i~(δjkδbc − δjcδbk)xcpb + i~(δjdδak − δjkδad)xapd
= i~(xbpbδjk − xjpk + xkpj − δjkxdpd)

Renaming b→ d, we see that the two δjk terms cancel and we are left with

[Lj, Lk] = i~(xkpj − xjpk)
= i~εkjlLl

as required.

Remark. We see that the three components of the angular momentum satisfy
the same commutation relation as the matrices Sj introduced in the previous
chapter. This suggests some sort of relation between the two. Indeed, we
shall see that Sj describe the spin of a particle which can be interpeted (but
is not the same as) the rotation of a particle around its axis.

Proposition 5.3.4. The eigenvalues of the operator Li are given by ~m for
m ∈ Z. In other words, the Li-angular momentum is quantised.

Proof. We shall only consider the L3 case for simplicity. By definition, we
have that

L3 = x1p2 − x2p1

=
~
i

(
x
∂

∂y
− y ∂

∂x

)
(5.1)

where we have used the variables x1 = x, x2 = y, x3 = z. For convenience,
we shall switch to the spherical coordinates

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

where r is a real positive constant, θ ∈ [0, π] and φ ∈ [0, 2π]. We can rewrite
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these transformations as follows

r =
√
x2 + y2 + z2 (5.2)

θ = arctan

(
x2 + y2

r2

)
(5.3)

φ = arctan
(y
x

)
(5.4)

We need to find the partial derivatives ∂
∂y

and ∂
∂x

in terms of these coordi-
nates. By the chain rule, we have that

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ
(5.5)

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ
(5.6)

Obviously from the definition of r we get that

∂r

∂y
=
y

r
,
∂r

∂x
=
x

r

Now,

∂θ

∂y
=

∂

∂y

(
x2 + y2

r2

)
1

1 +
(
x2+y2

r2

)2

=
2y

r2

r4

r4 + (x2 + y2)2

=
2yr2

r4 + (x2 + y2)2

∂θ

∂x
=

∂

∂x

(
x2 + y2

r2

)
1

1 +
(
x2+y2

r2

)2

=
2x

r2

r4

r4 + (x2 + y2)2

=
2xr2

r4 + (x2 + y2)2
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and

∂φ

∂y
=

∂

∂y

(y
x

) 1

1 +
(
y
x

)2

=
1

x

x2

x2 + y2

=
x

x2 + y2

∂φ

∂x
=

∂

∂x

(y
x

) 1

1 +
(
y
x

)2

=
−y
x2

x2

x2 + y2

=
−y

x2 + y2

Inserting these partial derivatives into Equations (5.5) and (5.6) gives us

∂

∂y
=
y

r

∂

∂r
+

2yr2

r4 + (x2 + y2)2

∂

∂θ
+

x

x2 + y2

∂

∂φ

∂

∂x
=
x

r

∂

∂r
+

2xr2

r4 + (x2 + y2)2

∂

∂θ
+
−y

x2 + y2

∂

∂φ

Now inserting these into Equation (5.1), we have

L3 = −i~
(
xy

r

∂

∂r
+

2xyr2

r4 + (x2 + y2)2

∂

∂θ
+

x2

x2 + y2

∂

∂φ

− xy

r

∂

∂r
− 2xyr2

r4 + (x2 + y2)2

∂

∂θ
+

y2

x2 + y2

∂

∂φ

)

We now assume that there exists an eigenfunction ψ of L3 with eigenvalue
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~m with m ∈ R. We have that

L3ψ = ~mψ

− i~ ∂

∂φ
ψ(r, θ, φ) = ~mψ(r, θ, φ)

∂

∂φ
ψ(r, θ, φ) = imψ(r, θ, φ)

This is a first order differential equation with solution

ψ(r, θ, φ) = ψ(r, θ, 0)eimφ

Now note that the transformation φ → φ + 2π leaves x, y and z invariant
meaning ψ(r, θ, φ) = ψ(r, θ, φ+ 2π). This implies that eimφ = eim(φ+2π). But
this is only true if m ∈ Z. Hence the eigenvalues of L3 are quantised.



Chapter 6

Symmetries and the Heisenberg
Picture of Time Evolution

6.1 Symmetries

LetH be a Hilbert space consisting of states of a quantum mechanical system
and assume that the operator Q : H → H induces a symmetry on the system.
Obviously Q should satisfy the following:

• Q should be invertible otherwise the symmetry would not be be able
to be undone and thus information could be lost.

• | 〈Qψ,Qφ〉 |2 = | 〈ψ, φ〉 |2 for all ψ, φ ∈ H as | 〈ψ, φ〉 |2 determines prob-
ability which must be conserved.

Definition 6.1.1. Let H be a Hilbert space and U : H → H an operator.
We say that U is unitary if UU † = U †U = 1H. In other words, the adjoint
of U is the inverse of U. Equivalently, we have that if U is unitary then
〈Uψ,Uφ〉 = 〈ψ, φ〉 for all ψ, φ ∈ H.

Definition 6.1.2. Let H be a Hilbert space and U : H → H an operator.
We say that U is anti-unitary if 〈Uψ,Uφ〉 = 〈ψ, φ〉∗.

Remark. Let Q be a an operator and Q−1 = Q†eiα for some α ∈ R then Q
also satisfies both requirements of a symmetry. We say that Q is unitary
up to a phase.

53
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Theorem 6.1.3. (Wigner’s Theorem) Let H be a Hilbert space and Q an
operator on H satisfying the assumptions for a symmetry. Then Q is either
unitary or anti-unitary up to a phase.

We now examine the effect of unitary operators on observables and states.
Let H be a Hilbert space, U : H → H a unitary operator and A : H → H an
observable. Let |ψ〉 → |ψU〉 := U |ψ〉 and A→ AU := UAU †. Then

(AU)† = (UAU †)† = U ††A†U † = UAU † = AU

therefore U preserves the self adjointness of A. We also have that

〈ψU , AUφU〉 = 〈Uψ,UAU †Uφ〉 = 〈ψ,U †UAφ〉 = 〈ψ,Aφ〉

Hence expectation values 〈ψ,Aψ〉 and general matrix elements 〈ψ,Aφ〉 are
invariant under the symmetry induced by U . We can also see that the eigen-
values of AU are the same as those of A:

A |ψ〉 = a |ψ〉 ⇐⇒ UAU †U |ψ〉 = aU |ψ〉 ⇐⇒ AU |ψU〉 = a |ψU〉

Example 6.1.4. Let B : H → H be a self adjoint operator and S ∈ R. Then
US := e(iSB) is unitary. Obviously, we have that

B = i

(
d

ds
US

) ∣∣∣
S=0

This is called the generator of the continuous symmetry US.

Example 6.1.5. The parity operator P is also a unitary operator.

In classical mechanics, we employed changes of coordinates which left the
overall system invariant. One would want to investigate similar phenomenae
in quantum mechanics. For the Hilbert space H = L2(R)3 and a change of
coordinates ~x→ ~x′ = F (~x) we want to find a unitary operator UF : H → H
such that (UFψ)(F (~x)) = ψ(x) for some ψ ∈ H. In other words, we require
that (UFψ)(x) = ψ(F−1(~x)).

Proposition 6.1.6. Consider the translation F (~x) = T~a(~x) := ~x+~a for some
constant ~a ∈ R3. Then the unitary operator corresponding to this translation
leaving a wave function ψ invariant is

UT~a = e
−i
~ ~a·~p
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Proof. We have that

UT~a
~ψ(~x) = ψ(U−1

T~a
(~x)) = ψ(~x− ~a)

Now Taylor expanding the right hand side, we get that

UT~a
~ψ(~x) = ψ(~x)− ~a · (~∇ψ)(~x)− 1

2
akal

∂

∂xk

∂

∂xl
ψ(~x) + . . .

= (1− ~a · (~∇)− 1

2
akal

∂

∂xk

∂

∂xl
+ . . . )ψ(~x)

= e−~a·
~∇ψ(~x)

Now the definition of angular momentum ~p = ~
i
~∇ yields

UT~a(~x) = e−
i
~~a·~pψ(~x)

as required.

Proposition 6.1.7. Consider the transformation ~x→ F (~x) = R~x for some

rotation matrix R ∈ SO(3) through an angle ~θ. Then the unitary operator
corresponding to this rotation leaving a wave function ψ invariant is

UR~θ = e−
i
~
~θ·~L

where L is understood to be the angular momentum operator.

Proof. For simplicity we shall only prove the theorem for a rotation through
an angle θ around the z axis. The rotation matrix for this case is given by

Rθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


We now consider Rθ to induce an infinitesimal rotation on the system. In
such a case, we can take the limit as θ → 0 and we get

R3 ' 13 +

 0 −θ 0
θ 0 0
0 0 0

+O(θ2)
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Applying this to the position vector ~x we have that

Rθ~x = ~x+ θ

 −x2

x1

0

+O(θ2)

Therefore

(URθψ)(~x) = ψ(R−1
θ ~x) = ψ(R−θ~x) ' ψ(~x− θ(−x2))

Now Taylor expanding the right hand side gives us

(URθψ)(~x) ' ψ(~x)− θ(−x2)
∂

∂x2

ψ(~x)− θx1
∂

∂x2

ψ(~x)

= ψ(~x)− θ
(
x1

∂

∂x2

− x2
∂

∂x2

)
ψ(~x)

= ψ(~x)− i

~
θ(x1p2 − x2p1)ψ(~x)

= ψ(~x)− i

~
θL3ψ(~x)

Hence for infinitessimal θ, we have

URθ = 13 −
i

~
θL3

Now consider θ to be a a finite angle (as opposed to infinitessimal). Obviously
we can build up theta by considering it to be the sum of infinitessimal angles.
In other words, we write

θ =
θ

N
+

θ

N
+ · · ·+ θ

N

and take the limit N → ∞. But this is just the same as applying UR θ
N

N

times and taking the limit N →∞:

URθ =

(
13 −

i

~
θ

N
L3

)N
= e−

i
~ θL3

where we have used the well known limit definition of the exponential func-
tion.
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Definition 6.1.8. Consider a quantum mechanical system with the Hamilton
operator Ĥ. Consider a unitary operator U (or an observable B). Then U
(B) is called a symmetry if [Ĥ, U ] = 0 ([Ĥ, B] = 0).

Remark. [Ĥ, B] = 0 =⇒ [eiSB, Ĥ] = 0

Example 6.1.9. H = p2

2m
commutes with p̂k and L̂k. Hence translations and

rotations are symmetries of a free particle.

Example 6.1.10. H − ~p2

2m
+ mω2

2
~x2 commutes with L̂. Hence rotations are

symmetries of the 3-dimensional harmonic oscillator.

Proposition 6.1.11. Let Ĥ be a time independent Hamiltonian and B a
time independent observable commuting with Ĥ. Then

• the expectation values of B are time-independent

• if |ψ(0)〉 is an eigenstate of B with eigenvalue λ at time t = 0 then

|ψ(t)〉 = e−
i
~ tH |ψ(0)〉 is an eigenstate of B with eigenvalue λ at time t

Proof. We shall only prove the first part.

Part 1 Using the Schrödinger equation, we have that

d

dt
〈B〉ψ =

d

dt
〈ψ(t), Bψ(t)〉

=

〈
∂

∂t
ψ(t), Bψ(t)

〉
+

〈
ψ(t), B

d

dt
ψ(t)

〉
=

〈
1

i~
Hψ(t), Bψ(t)

〉
+

〈
ψ(t), B

i

i~
ψ(t)

〉
=

〈
ψ(t),− 1

i~
HBψ(t)

〉
+

〈
ψ(t),

1

i~
BHψ(t)

〉
=

〈
ψ(t),− 1

i~
HBψ(t) +

1

i~
BHψ(t)

〉
=

〈
ψ(t),

1

i~
(BHψ(t)−HBψ(t))

〉
=

1

i~
〈[B,H]〉ψ

= 0
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Example 6.1.12. An example of a discrete symmetry that is implemented
by an anti-unitary operator is the time reversal map t → −t. Assume the
Hamiltonian Ĥ is t-independent and real. Let ψ ∈ L2(R)3 a wave function
and define

QT : H → H
ψ(x, t) 7→ ψ(x,−t)∗

Then we observe the following (letting t̃ = −t):

• ψ satisfies the Schrödinger equation if and only if QTψ satisfies the
Schrödinger equation:

~∂tψ(t) = Hψ(t) ⇐⇒ (i~∂tψ(t))∗ = (Hψ(t))∗

⇐⇒ −i~∂tψ(t)∗ = Hψ(t)∗

⇐⇒ i~∂t̃ψ(−t̃)∗ = Hψ(−t̃)∗

⇐⇒ i~∂t̃(QTψ)(t̃) = H(QTψ)(t̃)

• Ĥ commutes with QT :

HQTψ(t) = Hψ(−t)∗ = (Hψ)∗(−t) = QTHψ(t)

• QT satisfies 〈Qψ,Qψ〉 = 〈ψ, ψ〉∗

Remark. Such an operator is the only important example of an anti-unitary
operator in quantum mechanics as any other anti-unitary operator can be
expressed as QTU for some unitary operator U.

6.2 Heisenberg Picture of Time Evolution

We have so far been considering the Schrödinger picture where ψ(t) ∈ H are
time-dependent states and A : H → H are observables (usually time inde-
pendent) - this system is governed by the Schrödinger equation. Thanks to
the Schrödinger equation, time evolution can be viewed as a symmetry of the
system since scalar products of states evolving according to the Schrödinger
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equation don’t change with time:

d

dt
〈ψ(t), φ(t)〉 =

〈
∂

∂d
ψ(t), φ(t)

〉
+

〈
φ(t),

∂

∂t
φ(t)

〉
=
i

~
(〈Hψ(t), φ(t)〉 − 〈ψ(t), Hψ(t)〉)

= 0

where we have used the fact that the Hamilton operator is self adjoint. Hence
〈ψ(t), φ(t)〉 = 〈ψ(t0), φ(t0)〉. Hence we expect to find a unitary operator
U(t, t0) such that

ψ(t) = U(t, t0)φ(t0)

for all t, t0 and φ. This operator satisfies the Schrödinger equation. In addi-
tion, it satisfies U(t, t0)† = U(t0, t) and U(t0, t0) = 1H. If Ĥ is time indepen-
dent then we have that

U(t, t0) = e−
i
~ (t−t0)Ĥ

(if Ĥ is time dependent then it is given by e
− i

~
∫ t
t0
Ĥ(τ) dτ

).
We use U to pass from the Schrödinger picture to the Heisenberg picture
where states are time independent and observables are usually t dependent.

Notation 6.2.1. We denote a state ψ and observable A in the Schrödinger
picture by ψS and AS. Analogously, we denote them ψH and AH in the
Heisenberg picture.

Definition 6.2.2. Let ψS and AS denote a state and observable in the
Schrödinger picture. Then we define

ψH := U †(t, t0)ψs(t)

AH(t, t0) := U †(t, t0)AsU(t, t0)

in the Heisenberg picture.

Remark. The commutation relations of observables are invariant: [AS, BS] =
CS ⇐⇒ [AH(t, t0), BH(t, t0)] = CH(t, t0). We also see that if the Hamil-
tonian in the Schrödinger picture is time independent then ĤH = ĤS since
U(t, t0) commutes with ĤS.
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Proposition 6.2.3. Consider a state ψ in the Schrödinger picture ψS and
in the Heisenberg picture ψH . Then

〈AS〉ψS(t) = 〈AH(t, t0)〉ψH
In other words, expectation values of observables are invariant.

Proof. We have that

〈AS〉ψS(t) = 〈ψS(t), ASψS(t)〉
= 〈U(t, t0)ψS(t0), ASU(t, t0)ψs(t0)〉
= 〈ψH(t0), (U(t, t0)†ASU(t, t0))ψH(t0)〉
= 〈ψH(t0), AH(t, t0)ψH(t0)〉
= 〈AH(t, t0)〉ψH

Theorem 6.2.4. Let AS be an observable in the Schrödinger picture and AH
the observable in the Heisenberg picture. Then these two observables satisfy
the following differential equation:

d

dt
AH(t) =

i

~
[Ĥ, AH ] +

(
∂

∂t
AS

)
H

This is known as Heisenberg’s equation of motion.

Proof. Writing AH(t) := AH(t, t0), we have that

i~
d

dt
AH(t) = i~(U †(t, t0)ASU(t, t0))

=

(
i~
d

dt
U †
)
ASU + U †AS

(
i~
∂

∂t
U

)
+ U∗

(
∂

∂t
AS

)
U

= −U †ĤASU + U †ASĤU + i~U∗
(
∂

∂t
AS

)
U

= −U †ĤUU †ASU + U †ASUU
†ĤU + i~U∗

(
∂

∂t
AS

)
U

= −ĤAH + AHĤ + i~U∗
(
∂

∂t
AS

)
U

= −[Ĥ, AH ] + i~U∗
(
∂

∂t
AS

)
U

Dividing through by i~, we arrive at the desired result.
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Remark. The Heisenberg equation of motion confirms our previous state-
ments about conserved quantities. If A has no explicit time dependence in
the Schrödinger picture then A is convserved if and only if it commutes with
the Hamiltonian.

Example 6.2.5. Consider again the harmonic oscillator with Hamiltonian

H = ~ω
(
a† + 1

2

)
where [a, a†] = 1 and x̂ =

( ~
2mω

) 1
2 (a + a†) is the position

operator. H, a, a† and x̂ are all explicitly time independent operators in the
Schrödinger equation.
We now change to the Heisenberg picture using U(t, t0) and setting t = 0.
We denote U(t) := U(t, 0) and first compute the following:

Ha = ~ω(N +
a

2
)

= ~ω(
a

2
+ [N, a] + aN)

= a~ω(N +
1

2
)− a~ω

= a(H − ~ω)

=⇒ Hna = a(H − ~ω)n

=⇒ eλHa = aeλ(H−~ω)

for some λ. We can therefore calculate the operators in the Heisenberg picture
as follows:

a(t) = U(t)†aU(t) = e
i
~ tHae−

i
~ tH

= ae
i
~ tH−

i
~ t~ωe−

i
~ tH

= e−itωa

a†(t) = (a(t))† = eiωta†

H(t) = e
i
~ tHHe−

i
~ tH = H

x̂ = U †(t)x̂U(t)

=

(
~

2mω

) 1
2

(a(t) + a†(t))

=

(
~

2mω

) 1
2

(e−iωta+ eiωta†)
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We will now calculate the expectation value of x̂(t) in the time independent
state |ψ〉 = 1√

2
(|ψn〉 + |ψn+1〉) where |ψn〉 is a normalised eigenstate of N

with eigenvalue n ∈ N ∪ {0}. We shall use, from previous results, that
a |ψn+1〉 =

√
n+ 1 |ψn〉 and a† |ψn〉 =

√
n+ 1 |ψn+1〉. We have that

〈x̂(t)〉ψ = 〈ψ, x̂ψ〉

=

(
~

2mω

) 1
2
(

1√
2

)2

(〈ψn, a(t)ψn+1〉+ 〈ψn+1, a
†(t)ψn〉)

=
1

2

(
~

2mω

) 1
2 (
e−iωt

√
n+ 1 〈ψn, ψn〉+ eiωt

√
n+ 1 〈ψn+1, ψn+1〉

)
=

(
~

2mω

) 1
2

cosωt

which looks very similar to the position at time t of the harmonic oscillator
in the classical setting.


